KENDRIYA VIDYALAYA IIM, LUCKNOW

II UNIT TEST 2019-20

SUB - MATHEMATICS

CLASS - XII

Time - 1 hours 30 minutes

Maximum Marks - 50

Note -

- 1. All question are compulsory
- 2. Section A contain 10 question of 1 marks each
- 3. Section B contain 3 question of 2 marks each
- 4. Section C contains 4 question of 4 marks each
- 5. Section D contains 3 question of 6 marks each
- 1. The edge of a cube is increasing at the rate of 0.3 cm/sec the rate of change if its surface areas when edge is 3 cm is
 - (a) 12 cm²/sec (b) 12.8 cm²/sec (c) 10.8 cm²/sec (d) 5cm²/sec
- 2. The equation of normal to the curve $y = \sin x$ at (0,0) is

(a)
$$x = 0$$
 (b) $y = 0$ (c) $x + y = 0$ (d) $x - y = 0$

- 3. $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\sin x} equal to$
 - (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) $\frac{3}{2}$
 - 4. The area enclosed by the curve $y = x^2$ and y = 8 is
 - (a) $\frac{64\sqrt{2}}{3}$ sq unit (b) $\frac{32}{3}\sqrt{2}$ sq unit
 - (c) 0 (c) $\frac{16}{3} \sqrt{2} \, sq \, unit$
 - 5. The differential equation of the family of lines passing through origin is
 - (a) y = mn (b) $\frac{dy}{dx} = m$ (c) $\frac{dy}{dx} = 0$ (d) $x \, dy y dx = 0$

- 6. The Magnitude of projection of (2 i j + k) on (i 2 j + 2 k) is.....
- 7. General solution of differential equation $\frac{dy}{dx} = e^{x+y}$ is
- 8. If |a|=8, |b|=3 and $|\vec{a}-\vec{b}|=12\sqrt{3}$ then the value of $|\vec{a}\times\vec{b}|$ is
- 9. $\int_{-1}^{1} (1-x) dx$ is equal to
- 10. Area of region bounded by the curve x = 2y + 3 the y axis is and between y = -1 and y = 1 is

Section B

- 11. Evaluate $\int_0^{\pi/2} \frac{\sin x \, dx}{1 + \cos^2 x}$
- 12. Solve differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$
- 13. Find value of λ for which 2 i-4j+5k and 3i-2j+2 λ k are perpendicular to each other.

Section - C

- 14. Find the intervals in which $f(x) = \sin x + \cos x$ is increasing or decreasing $0 \le x \le 2\pi$
- 15. By using properties of definite integrals evaluate:-

$$\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

OR

$$\int_0^{\pi/2} \log(\mathbf{\phi} + \tan \mathbf{x}) \, dx$$

16. Find particular solution satisfying the given condition -

$$(x+y)dy + (x-y)dx = 0 y = 1 when x = 1.$$

17. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ find the value of $\vec{a} - \vec{b} + \vec{b} - \vec{c} + \vec{c}$, \vec{a} \vec{a} \vec{b} \vec{c} \vec{c}

Or

For three non zero vectors \vec{a} , \vec{b} and \vec{c} prove that [a-b b-c c-a] =0

Section -D

18. Prove that the volume of largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of sphere

or

Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.

- 19. Evaluate $\int_0^{\pi/2} \log \sin x \, dx$
- 20. Find the area bounded by $(x 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$ by method of integration

or

Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3}$ y = x in the first quadrant, using integration.
